Первую часть статьи я посвятил краткому изложению основ физиологии мышечной деятельности и, пожалуй, пора вознаградить терпение читателей и приступить к рассмотрению самого главного вопроса, интересующего всех приверженцев железного спорта, - что заставляет наши мышцы увеличивать объем и силу? Но, прежде чем изложить собственные взгляды по этому предмету, я хотел бы ознакомить читателя с основами классической теорией тренировки.
Организм - саморегулируемая система, стремящаяся к поддержанию постоянства внутренней среды. Физическая нагрузка оказывает выраженное воздействие на внутреннюю среду мышц и организма в целом, смещая многие биохимические константы от уровня, характерного для гомеостаза покоя, к состоянию, соответствующему гомеостазу деятельности. Степень этих изменений зависит от характера и интенсивности физической нагрузки и индивидуальной реакции на нее организма, отражающей уровень тренированности. Сразу после прекращения нагрузки, в организме начинаются процессы, стремящиеся восстановить исходное состояние, соответствующее гомеостазу покоя, в ходе этих процессов закрепляются изменения, позволяющие в дальнейшем минимизировать возмущение внутренней среды при аналогичных нагрузках.
Спортивную тренировку можно рассматривать как процесс направленного приспособления организма (адаптации) к воздействию тренировочных нагрузок.
Различают срочную и долговременную адаптацию.
Срочная адаптация - это ответ организма на однократное воздействие тренировочной нагрузки, выраженный в "аварийном" приспособлении к изменившемуся состоянию внутренней среды и сводящийся, преимущественно, к изменениям в энергетическом обмене и к активации высших нервных центров, ответственных за регуляцию энергетического обмена.
Долговременная адаптация развивается постепенно на основе многократной реализации срочной адаптации путем суммирования следов повторяющихся нагрузок.
В развитии процессов адаптации различают специфическую компоненту и общую адаптационную реакцию.
Процессы специфической адаптация затрагивают внутриклеточный энергетический и пластический обмен и связанные с ним функции вегетативного обслуживания, которые специфически реагируют на данный вид воздействия пропорционально его силе.
Общая адаптационная реакция развивается в ответ на самые различные раздражители не зависимо от их природы, в случае, если сила этих раздражителей превышает определенный пороговый уровень. Реализуется общая адаптационная реакция благодаря возбуждению симпато-адреалиновой и гипофизарно-адренокортикальной систем, в результате активации которых в крови и тканях повышается содержание катехоламинов и глюкокортикоидов, что способствует мобилизации энергетических и пластических резервов организма. Такая неспецифическая реакция на раздражение получила название "синдром стресса", а раздражители, вызывающие эту реакцию, обозначают как стресс-факторы. Общий адаптационный синдром сам по себе не является основой адаптации к тренировочным нагрузкам, а лишь призван на системном уровне обеспечивать протекание специфических адаптационных реакций, которые и реализуют приспособление организма к конкретным видам нагрузки.
Не смотря на различную природу процессов специфической адаптации можно выделить общие закономерности их протекания. Основу специфической адаптации составляют процессы восстановления сниженных во время мышечной работы энергетических ресурсов, разрушенных структур клеток, смещенного водно-электролитического баланса и др. Наглядно проследить закономерности протекания восстановительных процессов можно на примере восстановления энергетических ресурсов организма, так как, при физических нагрузках наиболее выраженные изменения обнаруживаются именно в сфере энергетического обмена.
Мышечная работа, в зависимости от интенсивности и длительности, приводит к снижению уровня креатинфосфата в мышцах, истощению запасов внутримышечного гликогена и гликогена печени, резервов жиров. Интенсивно протекающие после прекращения нагрузки процессы восстановления приводят к тому, что в о пределенный момент отдыха после работы уровень энергетических веществ превышает исходный дорабочий уровень. Это явление получило название суперкомпенсация, или сверхвосстановление (рис. 1).
Фаза суперкомпенсации длится не вечно, постепенно уровень энергетических веществ возвращается к норме, испытывая некоторые колебания возле состояния равновесия. Чем больше расход энергии при работе, тем интенсивнее идет восстановление и тем значительнее превышение исходного уровня в фазе суперкомпенсации. Однако это правило применимо лишь в ограниченных пределах. При истощающих нагрузках, приводящих к большому накоплению продуктов распада, скорость восстановительных процессов замедляется, фаза суперкомпенсации откладывается во времени и оказывается выраженной в меньшей степени.
Похожим образом развивается восстановление не только энергетических, но и пластических ресурсов организма, и даже целых тренируемых функций. Напряжение в ходе физической нагрузки систем, ответственных за реализацию той или иной функции, приводит к снижению функциональных возможностей организма, затем во время отдыха достигается состояние суперкомпенсации тренируемой функции, длящееся определенное ограниченное время, далее, при отсутствии повторных нагрузок, уровень тренируемой функции вновь снижается, - наступает фаза утраченной суперкомпенсации (рис 1).
Развитие долговременной адаптации становится возможным только в случае, если достигаемый срочный и отставленный тренировочный эффект от каждой тренировки будет суммироваться по определенным правилам.
Проведение повторных тренировок в фазе утраченной суперкомпенсации (слишком редкие тренировки) (Рис. 2) не сможет привести к закреплению тренировочного эффекта, так как каждая последующая тренировка проводится после возвращения функциональных возможностей организма к исходному уровню.
Слишком частые тренировки, прерывающие стадию восстановления до достижения эффекта суперкомпенсации (Рис. 3) приводят к отрицательному взаимодействию тренировочных эффектов и снижению функциональных возможностей организма.
И только проведение повторных тренировок в фазе суперкомпенсации (Рис. 4) приводит к положительному взаимодействию тренировочных эффектов, закреплению следов срочной адаптации, росту тренируемой функции и формированию долговременной адаптации.
Однако не следует воспринимать приведенные выше правила слишком конкретно. Требование задавать нагрузку только в стадии суперкомпенсации справедливо лишь в долгосрочной перспективе. В рамках одного тренировочного микроцикла возможны серии тренировок в стадии недовосстановления (Рис. 5), приводящие к более глубокому истощению тренируемой функции, что может быть использовано для получения более мощного роста функциональных возможностей в стадии суперкомпенсации, либо для вызванного тактической необходимостью переноса во времени эффекта суперкомпенсаци.
На первый взгляд может показаться, что составление эффективных тренировочных программ является делом не сложным. Достаточно определить уровень нагрузки, необходимый для достижения максимальной суперкомпенсации той или иной функции, и время наступления фазы суперкомпенсации, а далее задавать повторные нагрузки с необходимой частотой, постоянно получая положительное суммирование тренировочных эффектов. На самом деле построить тренировку по такому принципу невозможно. Дело в том, что различные параметры и функции, вносящие свой вклад в общую тренированность, необходимую для того или иного вида спорта, имеют разное время восстановления и достижения суперкомпенсации и разную длительность фазы суперкомпенсации. Так фаза суперкомпенсации креатинфосфата достигается через несколько минут отдыха после нагрузки, приводящей к существенному снижению его уровня. Для достижения выраженной суперкомпенсации содержания гликогена в мышцах требуется не менее 2-3 суток, к этому моменту уровень креатинфосфата уже вступит в фазу утраченной суперкомпнесации. А вот для восстановления структур клеток, разрушенных в ходе тренировок, может потребоваться еще больший период времени, в течение которого уровень гликогена в мышцах уже может вернуться к исходному уровню. В этой связи хочу сразу обратить внимание читателей на тот факт, что заявления многих "гуру" бодибилдинга о том, что время восстановления мышцы после тренировки должно составлять n часов/дней, без указания о восстановлении какой ведущей функции идет речь, кажутся довольно сомнительными. Задать определенный период отдыха между тренировками, позволяющий получать развитие всех тренируемых функций одновременно, невозможно.
Поэтому в классической спортивной школе годичный (и даже многолетний) период тренировок разбивают на микро и макроциклы в ходе которых ставятся задачи по развитию определенных тренируемых качеств, чередование тренировочных занятий в ходе микроциклов осуществляется таким образом, что бы физические нагрузки, направленные на развитие определенного двигательного качества задавались через промежутки времени, обеспечивающие суперкомпенсацию ведущей функции, а нагрузки иной направленности, применяемые в этот период, не оказывали отрицательного влияния на восстановление основной функции. Однако такой метод срабатывает только при развитии взаимонезависимых функций или параметров. В случае если определенное двигательное качество в равной мере зависит от развития нескольких функций или параметров, испытывающих одновременное напряжение в ходе одного тренировочного занятия и имеющих разное время восстановления, в течение микроцикла приходиться варьировать интенсивностью и объемом тренировок, накладывая волны восстановления различных параметров друг на друга таким образом, что бы получить суперкомпенсацию основных тренируемых функций к моменту завершения микроцикла.
На рисунке 6 представлен простейший вариант построения микроцикла для двух тренируемых функций, имеющих разное время восстановления. В течении микроцикла одна из функций испытывает последовательное положительное суммирование тренировочных эффектов, в то время как другая последовательно вводится в стадию истощения и достигает суперкомпенсации только во время отдыха, либо снижения нагрузки к концу микроцикла. Реальная картина тренировок еще гораздо сложнее, представьте, что тренируемых параметров и функций не две, а десятки. Но общие правила и закономерности, я думаю, вам уже стали понятны.
Как вы видите, классическая теория тренировки оперирует такими понятиями как двигательные качества, функциональные возможности, и основывается на изучение процессов, приводящих к росту работоспособности мышц и организма в целом в различных режимах работы. Основой практически всех видов спорта является именно работоспособность, и цель планируемых адаптационных изменений в организме спортсмена, как правило, - выход на новый уровень работоспособности. Гипертрофия мышц вовсе не является целью тренинга в классическом спорте, и воспринимается лишь как побочный продукт развития основных двигательных качеств, более того, в некоторых случаях, гипертрофия мышц может оказывать даже отрицательное влияние на достижение стоящих перед спортсменом целей. Посетителей же тренажерных залов, за редким исключением, в большей степени интересует именно достижение гипертрофии мышц, нежели развитие двигательных качеств и повышения работоспособности. Безусловно, развитие работоспособности мышц способствует гипертрофии мышечной ткани.
Процессы, направленные на улучшение доставки кислорода к мышцам существенно развивают капилярную сеть, что способствует общей гипертрофии мышц.
Тренировка окислительной активности мышц приводит к значительному росту в саркоплазме мышечных волокон количества и объема митохондрий - энергетических станций клетки.
Последовательные процессы суперкомпенсации внутримышечных запасов гликогена приводят к значительному его накоплению, что, в свою очередь, увеличивает объем саркоплазмы мышечного волокна.
Накопление иных веществ, ответственных за энергообеспечение, мышечной деятельности, таких, например, как креатинфосфат, так же увеличивает объем саркоплазмы, и даже не столько за счет объемов самих этих веществ, сколько за счет сопутствующего увеличения объема внутриклеточной жидкости.
То есть, тренировка работоспособности мышц приводит к гипертрофии мышечных волокон в основном за счет увеличения объема саркоплазмы.
Но самый существенный вклад в рост объемов и силы сокращения волокна вносит гипертрофия миофибрилл, все остальные компоненты клетки призваны лишь обеспечивать их сократительную активность. Как размер топливных баков самолета зависит от мощности его турбин, так и объем саркоплазмы мышечного волокна зависит от развития сократительного аппарата клетки (ну и конечно от объема работы, регулярно выполняемой мышцами).
Как я упоминал в первой части, миофибриллы представляют из себя белковые нити, поэтому увеличение количества и поперечного сечения миофибрилл в волокне напрямую связано с интенсивностью синтеза белка клеткой. Сейчас является неопровержимым фактом то, что тренировка интенсифицирует синтез белка, но вот вопрос, - как и почему это происходит?
Молекула белка представляет из себя цепочку аминокислот, число звеньев в которой исчисляется от нескольких десятков до нескольких тысяч. Всего в природе насчитывается более 300 видов аминокислот, но для строительства белка используется только 20. Свойства белка определяются последовательностью аминокислот в цепочке, а так же пространственной конфигурацией самой цепочки (вторичная и третичная структура белка). Все белки человека строятся в клетках самостоятельно из аминокислот, поступающих в организм с белковой пищей и синтезируемых самим организмом. Упрощенно процесс синтеза белка изображен на рисунке 7.
Код каждого белка записан в ДНК ядра клетки в виде цепочки нуклеотидов. Комбинация из трех нуклеотидов, называемая кодоном, кодирует одну аминокислоту. Последовательность кодонов в ДНК определяет последовательность аминокислот в белке. Ген - последовательность нуклеотидов, кодирующая один белок. Эта последовательность считывается с ДНК и записывается в матричной - РНК (м-РНК), этот процесс называется транскрипцией. мРНК - это как бы кусочек ДНК способный выходить из ядра в саркоплазму, где закрепляется на рибосомах. Транспортные РНК (тРНК) доставляют к мРНК аминокислоты. Один конец тРНК узнает на мРНК соответствующий кодон и прикрепляется к нему. Аминокислота, находящаяся на другом конце тРНК, сцепляется с аминокислотой соседней тРНК, таким образом, выстраивается цепочка белка.
Синтез белка очень сложный процесс и его интенсивность зависит от огромного количества факторов.
Прежде всего, считывание мРНК в ядре начинается под воздействием стероидных гормонов, вырабатываемых железами внутренней секреции и поступающими в кровь. Молекула гормона из крови проникает в клетку, где, с помощью белка рецептора, доставляется в ядро и разблокирует участок цепочки ДНК, ответственный за тот или иной белок, после чего становится возможной транскрипция мРНК.
Для запуска транскрипции РНК, необходимо так же развернуть спираль ДНК, для чего используется фермент РНК-полимераза.
На синтез белка сильнейшее влияние оказывает гормон роста (СТГ или соматотропин). По химическому составу соматотропин это белок, поэтому он не может свободно проникать в клетку, в отличие от стероидных гормонов, а воздействует на рецепторы, расположенные на поверхности клетки. Механизм действия гомона роста до конца не изучен, но точно известно, что он стимулирует деятельность РНК-прлимераз и рибосомного аппарата клетки.
Ну и конечно для сборки белка требуется наличие в клетке достаточного количества аминокислот и запасов энергии. Без аминокислот не из чего будет строить белок, а энергия нужна для сборки молекулы.
И так, для успешного синтеза белка требуются, как минимум, следующие условия:
- высокий уровень анаболических гормонов в крови (тестостерона и соматотропина)
- наличие в клетке белков-рецепторов тестостерона
- активность ферментов и факторов транскрипции РНК (РНК-полимераз и др.)
- достаточное количество аминикислот в клетке
- запас энергии в клетке
Теперь осталось только ответить на вопрос - как именно тренировка влияет на синтез белка ?
Должен разочаровать читателя детально объяснить механизм этого влияния на сегодняшнем уровне развития науки невозможно. Если о том, как происходит регуляция синтеза белка в простейших одноклеточных организмах, когда в клетке может идти строительство всех белков, закодированных в ДНК, ученые имеют определенное представление, то, как осуществляется регуляция синтеза белка в многоклеточных организмах, когда, теоретически, каждая клетка может синтезировать все возможные белки, закодированные в ДНК, но синтезирует лишь набор белков, присущий данному типу клеток, остается пока не известным. Да гормоно-рецепторный комплекс разблокирует участок ДНК, в котором закодирован определенный белок, но как гормон узнает какой именно ген в данный момент необходим клетке - миозин быстрого волокна или миозин медленного волокна, а может быть миоглобин? Генетикам предстоит еще долгий путь, прежде чем раскроются все тайны синтеза белка. А как же быть до тех пор?
На сегодняшний момент существует несколько гипотез, пытающихся объяснить влияние тренировки на синтез белка в мышце. Но все эти гипотезы можно объединить в два конкурирующих направления - теория накопления и теория разрушения.
Суть теории накопления состоит в том, что во время мышечной деятельности в клетке вырабатываются некие факторы-регуляторы, оказывающие влияние на процессы считывания информации с ДНК. Некоторые ученые относят к этим факторам повышение кислотности среды в результате мышечной деятельности, влияющее на спирилизацию ДНК. Некоторые относят к факторам-регуляторам свободный креатин - при интенсивной деятельности кретинфосфат, содержащийся в клетке, в целях восполнения энергии передает свою фосфатную группу на АДФ, превращаясь в креатин, и именно креатин, по мнению ученых, оказывает регулирующее воздействие на ДНК.
Думаю, что подобные процессы должны иметь место в регуляции интенсивности белкового обмена, - как известно в случае обездвиживания мышцы интенсивность синтеза белка в клетках снижается, то есть движение само по себе является фактором-регулятором белкового синтеза. Между тем я не могу отвести существенную роль этим процессам в гипертрофии мышц, так как свое регулирующее воздействие данные факторы оказывают непосредственно во время работы мышц, а синтез белка идет восновном после прекращения нагрузки во время отдыха, когда концентрация факторов-регуляторов уже возвращается к уровню, характерному для состояния покоя.
Я полагаю, что более полную картину способна сформировать теория разрушения, суть которой заключается в нижеследующем.
Как я уже упоминал выше - организм это саморегулируемая система, настроенная миллионами лет эволюции на поддержание постоянства внутренней среды. Разрушение внутренних структур организма автоматически запускает процессы, стремящиеся восстановить утраченное равновесие. Так разрушение белковых структур клетки должно тут активизировать восстановительные процессы синтеза белка, создав все необходимые условия для их протекания. То, что активность синтеза белка в поврежденной ткани в несколько раз выше, чем в нормальных условиях - это факт. Интенсивные восстановительные процессы не могут затихнуть сразу по завершению восстановления поврежденных структур. Как и все прочие процессы, процессы синтеза белка имеют некоторую инерцию, поэтому, в результате восстановления будет наблюдаться некоторый избыточный анаболизм, приводящий к превышению уровня белка в клетке над исходным. Другими словами, будет наблюдаться хорошо известная нам по восстановлению энергетических ресурсов суперкомпенсация. То есть восстановление белковых структур клетки подчиняется тем же общим законам адаптации, с ко торыми вы уже знакомы.
Обычно регулирующую роль тренировки в гипертрофии мышц сводят лишь к интенсификации процессов синтеза РНК в ядрах клеток. Между тем общий объем мышцы зависит от количества в ней мышечных клеток/волокон и от количества ядер в мышечных клетках/волокнах (напоминаю, что мышечная клетка и волокно это один и тоже объект). Согласно утвердившимся в среде спортивных физиологов представлении число мышечных клеток/волокон задается генетически и не меняется в ходе тренировок, - об этом свидетельствуют большинство экспериментов, проводившихся в данном направлении (Шекман Б.С.), хотя имеется и ряд экспериментальных данных заставляющих усомнится в этом постулате (об этом чуть позже). Объясняется неизменность количества клеток/волокон в мышце тем, что мышечная клетка представляет из себя сложный многоядерный объект, ядра которого утрачивают способность к делению, как и вся клетка, еще на этапе эмбрионального развития. Между тем потенциальный объем клетки/волокна зависит от количества в ней клеточных ядер - источников РНК. При прочих равных условиях волокно с большим количеством ядер будет иметь больший объем.
А теперь внимание! Как показывает ряд экспериментов (M Cabric и N.T.James) в ходе тренировок в мышечных клетках увеличивается количество клеточных ядер. Но ядра мышечных клеток не способны к делению! Так откуда же взялись новые ядра?
Ответ на этот вопрос можно найти в работах ученых, занимающихся проблемами регенерации травмированной ткани. Как оказалось, на этапе эмбрионального развития, не все клетки эмбриона, из которых развивается мышечная ткань, сливаются в мышечные волокна и утрачивают способность к делению, часть из них (около 10%) остается в оболочке волокон в виде клеток-сателлитов. Клетки-сателлиты сохраняют способность к делению на протяжении всей жизни и являются резервом восстановления мышечной ткани. Только клетки сателлиты способны быть источником новых ядер в волокне. Как показывают эксперименты (Володина А.В., Женевская Р.П., Климов А.А. и Данилов Р.К., Улумбеков Э.Г. и Челышев Ю.А.) повреждение волокна приводит к активации клеток-сателлитов, которые, освободившись из оболочки, вступают в цикл деления, затем сливаются вместе, восстанавливая поврежденные волокна. Логично предположить, что к активации клеток-сателлитов после тренировки приводят процессы аналогичные травмам волокон. Многие знают на собственном опыте, что интенсивная тренировка, особенно после продолжительного перерыва, отзывается болью в последующие несколько дней отдыха. Боль явно свидетельствует о разрушениях внутренней структуры мышц. Микроскопические исследования показывают, что в результате тренировок в ряде мышечных волокон нарушается упорядоченное расположение миофибрилл, наблюдается распад митохондрий, а в крови повышается уровень лейкоцитов, как при травмах или инфекционном воспалении (Морозов В.И., Штерлинг М.Д с соавторами). Разрушение внутренней структуры мышечного волокна во время тренировки, назовем его микротравмой, приводит к появлению в волокне обрывков белковых молекул, что активизирует лизосомы, "переваривающие", с помощью содержащихся в них ферментов, белковые структуры, подлежащие уничтожению. Если лизосомы не справляются с объемом повреждений, то через сутки наблюдается пик активности боле мощных "чистильщиков" - фагоцитов. Фагоциты - клетки, живущие в межклеточном веществе и крови, основная задача которых уничтожение поврежденных тканей и чужеродных микроорганизмов. Именно продукты жизнедеятельности фагоцитов вызывают воспалительные процессы и боль в мышцах, через сутки после тренировки. Но между тем, по-видимому, именно благодаря деятельности лизосом и фагоцитов повреждается оболочка мышечного волокна, и из нее высвобождаются клетки-сателлиты. Освободившись, клетки-сателлиты начинают цикл деления и сливаются с поврежденным волокном, увеличивая в нем количество ядер, тем самым, повышая его потенциальную возможность в синтезе белка.
В свете выше сказанного, я бы не стал полностью исключать возможность высвобождения клеток-сателлит в межклеточное пространство и слияние их в новые волокна, что достоверно наблюдалось в случае обширных повреждений мышечной ткани, правда новые волокна в этих случаях образовывались в замен утраченных, что вовсе не приводило у общему увеличению количества волокон в мышце. Но, если предположить, что повреждения волокна не столь обширны, чтобы привести к его гибели, а клетки сателлиты пошли по пути слияния в новое волокно, то гиперплазия становится не таким уж невероятным фактом, как это принято считать. Тем более что есть ряд экспериментов выбивающихся из общих представлений о невозможности гиперплазии. Так Goneya W, удалось на 19-20% увеличить количество мышечных волокон в лапах кошек, которых он заставлял тренироваться с прогрессирующей нагрузкой. А Yamada S, Buffinger N, Dimario J&Strohman R (1989) и Larson L&Tesch PA (1986) проводили взятия проб из мышечной ткани у элитных бодибилдеров, и контрольной группы людей не обладающих значительной мускулатурой, анализ проб показал, что поперечное сечение волокон у элитных бодибилдеров лишь незначительно больше чем у представителей контрольной группы, в то время как поперечное сечение мышц различалось существенно, то есть бодибилдеры обладают большим количеством волокон по сравнению с контрольной группой, что может быть либо следствием гиперплазии волокон, либо элитные бодибилдеры от рождения обладали значительно большим количеством волокон, чем обычные люди, но эти волокна были крайне тонкими (так как до тренировки элитные бодибилдеры обладали мускулатурой обычных размеров). В последнее хочется верить меньше всего, так как эта теория ставит крест на возможности обычных людей добиться сколько ни будь значительной гипертрофии мышц. Однако не будем зацикливаться на вопросах гиперплазии, и так как возможность последней у человека считается недоказанной, будем, по прежнему, исходить из того, что рост мышц происходит исключительно по причине гипертрофии уже существующих волокон. Но вот одной из причин гипертрофии самих волокон, как раз и является увеличение в них количества клеточных ядер, что по оказываемому эффекту практически равносильно гиперплазии.
Вернемся к рассмотрению процессов происходящих в мышце во время восстановления после тренировки. По завершении катаболического этапа саморазрушения поврежденных структур начинается этап компенсации - восстановления внутренней структуры волокон, который, ради справедливости должен заметить, не всегда может завершиться суперкомпенсацией. При слишком обширных травмах или отсутствии условий для восстановления результат может быть прямо противоположным.
Против теории разрушения чаще всего приводят следующие аргументы: "Если причиной роста являются микротравмы, то почему же мышца не растет, если ее бить палками?"
Ответ на этот вопрос можно найти в работе Володиной А.В., целью ее докторской диссертации является изучение процессов, препятствующих реализации регенерационного потенциала, заложенного в мышечном волокне. Эксперименты показали, что, в условиях обширного повреждения волокон, сопровождающегося ишемией (нарушением кровоснабжения) поврежденных тканей, вызывающей дефицит в снабжении волокна кислородом и питательными веществами, часть клеток-сателлит гибнет и поглощается фагоцитами, а часть идет по пути превращения не в мышечные клетки, а в фибробласты (клетки, производящие коллаген). В итоге место повреждения затягивается соединительной тканью, а количество волокон в мышечной ткани снижается, по причине гибели части из них от повреждений.
Очевидно, что при микротравмах волокон - разрушении внутренней структуры волокна без нарушения его целостности, в отличие от травм целой мышцы, снабжение волокон кислородом, а так же его иннервация не нарушены, поэтому условия, приводящие к гибели целых волокон и клеток-сателлитов, отсутствуют.
И так, если объем микротравм, полученных в ходе тренировки, был не слишком велик для срыва восстановительных процессов, но достаточен для активации клеток-сателлитов, то в подвергшемся тренировочной нагрузке волокне увеличивается количество клеточных ядер. Восстановление энергетических ресурсов после тренировки приводит к суперкомпенсации энергетических веществ, а лизис разрушенных тренировкой белков увеличивает содержание свободных аминокислот непосредственно в волокне, что в совокупности создает благоприятные условия для интенсификации процессов синтеза белка. При условии достаточного по времени и полноценного отдыха, отсутствия новых стрессовых нагрузок, адекватного снабжения волокна энергией и пластическими ресурсами (аминокислотами) интенсивные процессы восстановления приведут к накоплению в волокне белковых структур сверх уровня, который был до тренировки, то есть будет наблюдаться гипертрофия мышц.
Надо отметить, что последовательность протекания фаз общей неспецифической адаптационной реакции (синдрома стресса) такова, что обеспечивает поддержку описанных выше регенерационных процессов на системном уровне. Первая катаболическая фаза стресс реакции, сопровождается выбросом кортикостероидов, что приводит к мобилизации энергетических ресурсов организма и обеспечивает индукцию ферментов лизосом и фагоцитов, расщепляющих белок (кортикостероиды являются теми гормонами, которые активируют на ДНК клеток гены протеолитических ферментов), что способствует скорейшему очищению волокон от поврежденных структур. В последующей фазе стресс реакции синтез кортикостероидов сменяется синтезом анаболических гормонов, что обеспечивает на системном уровне компенсаторный анаболизм.
Как тут не вспомнить об основном законе философии - единстве и борьбе противоположностей. Анаболизм активируется катаболизмом - рост мышц есть следствие их предварительного разрушения.
Открытым остается вопрос, что вызывает разрушение внутренней структуры волокна и является тем самым стрессом для мышцы? Прежде чем ответить на этот вопрос, рекомендую читателям вспомнить механизм сокращения мышц, описанный в I части.
Ученый и пауэрлифтер Фредерик Хетфилд, считающий роль микротравм в тренировочном процессе скорее отрицательной из-за необходимости длительного восстановления, полагает, что причиной микротравм является повреждение миофибрильных нитей во время негативных повторений. Вот как он описывает механизм этих повреждений: "Так как количество перекрестных мостиков, старающихся сократить мышцу недостаточно, они буквально "продираются" сквозь мостики соединений нити, стараясь вызвать концентрическое сокращение. Однако сцепиться, как следует им не удается, они срываются и повреждаются. Эти действия, очень напоминающие протаскивание щетины одной зубной щетки через другую, сопровождаются сильным трением, и мышечные нити разрушаются"
Не правда ли образно? Но, на мой взгляд, несколько сумбурно - так пишут когда хотят объяснить то, что до конца не понимают сами. К сожалению, мэтр ошибся дважды.
Во-первых, микротравмы возникают не только при негативных повторениях, но и при позитивном движении.
Во-вторых, использовать термин "трение" для описания взаимодействия молекул некорректно. Сила трения введена в физике для описания на макро-уровне поверхностного взаимодействия тел специально, дабы абстрагироваться от истинной природы "трения" - электромагнитного взаимодействия молекул поверхностного слоя.
Механизм повреждения миофибрильных нитей носит несколько иной характер, чем описывает Хетфилд, и мне удалось его аналитически смоделировать.
Для понимания механизма повреждения миофибрильных нитей следует обратиться к рассмотрению фаз движения миозинового мостика, которые вкратце уже описаны в первой части статьи. Сейчас остановимся подробнее на этом вопросе (рис. 8).
Итак, в первой фазе, еще до сцепления с актином, головка миозинового мостика несет в себе АТФ. Далее во второй фазе под действием фермента АТФаза АТФ гидролизуется, расщепляясь на АДФ и неорганический фосфат. Происходит это на не связанном с актином миозине, после этого миозиновая головка может соединятся с актином - третья фаза. Для совершения рабочего хода мостика используется энергия, освобождающаяся при диссоциации продуктов гидролиза АТФ. Основная доля энергии выделяется при высвобождении неорганического фосфата (переход из третей фазы в четвертую) и меньшая часть при высвобождении АДФ (переход из четвертой фазы в пятую). В пятой фазе -ригорное состояние мостика, мостик уже не генерирует силу, но по-прежнему находится в сцепленном состоянии, вывести его из этого состояния может только молекула АТФ. Поглощая АТФ, головка миозина переходит в шестую фазу, после чего отцепляется от актина, возвращаясь в исходное состояние (первая фаза).
Анализируя фазы движения миозинового мостика, я сразу обратил внимание на тот факт, что для отцепления мостика от актина требуется молекула АТФ. При скольжении нитей миозина вдоль актина под действием сил тянущих мостиков (позитивное движение) или под действием внешней силы (негативное движение) сцепленные мостики растягиваются и мешают движению, этим, как вы помните, объясняется различие в силе развиваемой волокном при удлинении и сокращении и сокращении с разной скоростью. Когда АТФ в мышце находится в достаточном количестве, мостики успевают вовремя отцепиться, но что будет, если, при снижении концентрации АТФ в мышце, молекула АТФ не успеет отцепить головку миозина до того, как растяжение мостика превысит предел его прочности? Естественно сцепленный мостик разорвется! (Рис. 9).
Вы, наверное, слышали о состоянии трупного окоченения мышц? Наступает оно потому, что в мертвом организме запасы АТФ не восполняются, и мостики миозина оказываются накрепко сцепленными с актином. Представьте, что произойдет с мышцей трупа, если ее насильно растянуть. Так вот нечто подобное происходит и с отдельными волокнами живой мышцы, в которых по причине интенсивной деятельности резко снижается уровень АТФ.
Надо понимать, что изображенное мной место разрыва мостика достаточно условно, я не могу точно сказать, где находится самое слабое звено в цепи, но то, что при движении, сопровождающемся недостатком АТФ, должно происходить нефизиологическое разрушение акто-миозинового комплекса - неоспоримо.
"Эврика!" - воскликнул я. Вот оно объяснение системы Ментцера! Работа до "отказа" вызывает истощение запасов АТФ и, соответственно, разрывы в акто-миозиновом комплексе, что является стрессом для мышцы и вызывает адаптационную реакцию. Сразу спешу предупредить читателей, радость моя была преждевременной. Как оказалось "отказ" наступает вовсе не из за исчерпания запасов АТФ, и уровень АТФ остается достаточно высоким даже в уставшей мышце. Решение задачи оказалось не таким простым, зато еще более красивым.
Сомневаться в правильности "отказной" теории, меня заставил и тот факт, что проявление боли в мышцах - вестника микротравм не имеет прямой связи с работой до "отказа". С одной стороны, на начальном этапе тренинга боль в мышцах возникает при любой работе, не зависимо от того был "отказ" или нет. С другой стороны регулярные тренировки приводят к тому, что даже работа сверх "отказа" (читинг, стриптиз и др.) не вызывает боли в мышцах - боль возвращается только после продолжительного перерыва в тренировках.
Эти противоречия заставили меня заняться детальным изучением процесса "отказа".
"Отказ"
понятие довольно условное, это не особое состояние мышцы, а ни что
иное, как неспособность развить силу, необходимую для преодоления
внешней нагрузки. Причиной отказа является снижение силы, генерируемой
целой мышцей и отдельными волокнами. Сила отдельного волокна зависит от
количества одновременно тянущих миозиновых мостиков. Биохимических
причин снижения силы, развиваемой мостиком в генерирующих силу фазах
(III, IV) не существует, во всяком случае, пока об этом ничего не
известно, поэтому сила волокна может снизиться только по следующим
причинам:
- Увеличение времени нахождения мостиков в ригорном - сцепленном не генерирующем силу состоянии (фаза V, VI);
- Увеличение времени нахождения мостиков в разомкнутом состоянии (фаза I, II).
Вспоминая аналогию с гребцами, скажем, что скорость движения лодки и развиваемая при этом сила тем выше, чем быстрее весла вытаскиваются из воды после гребка и чем меньше гребцы сидят с поднятыми веслами без дела.
Время нахождения мостика в ригорном состоянии зависит от того, как быстро АТФ вступит в контакт с головкой миозина. Как известно частицы вещества постоянно находятся в хаотическом движении (рис. 10). Предположим что r - некий радиус, ограничивающий область пространства вокруг головки миозина, при попадании в пределы которого молекулы АТФ становится возможным реакция, приводящая к отцеплению головки от актина.
В этом случае время нахождения мостика в ригорном состоянии равно частному от деления расстояния (h) от мостика до ближайшей молекулы АТФ, движущейся в направлении мостика, на cскорость движения молекулы (v). Среднее же время нахождения мостиков в ригорном состоянии равно средневзвешенному расстоянию между молекулами АТФ деленному на средневзвешенную скорость движения молекул.
Т=h/v
Естественно чем выше концентрация АТФ в мышце, тем меньше среднее расстояние между молекулами АТФ и головками миозина и тем меньше время нахождения мостиков в ригорном состоянии.
То есть сила волокна зависит от концентрации АТФ. При прочих равных условиях волокно с высокой концентрацией АТФ сильнее такого же волокна, но с меньшей концентрацией АТФ. Известно, что воспроизводство АТФ за счет креатинфосфата происходит почти мгновенно, поэтому можно сказать, что концентрация АТФ при работе мышцы зависит и от концентрации креатинфосфата. Таким образом:
Чем выше концентрация энергетических фосфатов (АТФ и креатинфосфата) в мышечном волокне, тем выше сила, развиваемая волокном.
После зависимости силы волокна от количества и поперечного сечения миофибрилл, влияние концентрации энергетических фосфатов на силу волокна является наиболее значимым. Именно по этой причине многие атлеты отмечают некоторую прибавку в силе, повышая уровень креатинфосфата в мышцах, принимая креатин, в качестве пищевой добавки.
Надо заметить, что зависимость силы волокна от концентрации энергетических фосфатов не является линейной. При высоких концентрациях, когда время ожидания контакта АТФ с головкой миозина станет меньше или сопоставимым со временем, необходимым для протекания химической реакции, приводящей к отделению головки миозина от актина, повышение концентрации АТФ и креатинфосфата будет мало влиять на скорость переключения мостиков и соответственно силу волокна. Зато низкие концентрации АТФ и креатинфосфата существенно снизят силу волокна, что может служить одной из причин отказа.
Рассмотрим второй фактор снижения силы сокращения - увеличение времени нахождения мостиков в разомкнутом состоянии (I, II фазы), что может происходить в результате снижения скорости гидролиза АТФ (снижения активности АТФазы - фермента ускоряющего реакцию гидролиза АТФ).
Расщепление АТФ и его воспроизводство за счет креатинфосфата вызывает накопление в мышце ортофосфорной кислоты, а гликолиз ведет к накоплению молочной кислоты. Активность АТФазы - фермента, благодаря которому происходит гидролиз АТФ, сильно зависит от кислотности среды. Как показывают эксперименты, максимум АТФазной активности достигается при среде близкой к нейтральной (рН=7), а при смещении среды мышцы в кислую сторону активность АТФазы падает, и при снижении рН среды до 5 АТФазная активность стремится к нулю (Богач П.Г. с соавторами, Поглазов Б.Ф). Таким образом, при накоплении кислых продуктов метаболизма АТФаза миозина постепенно снижает скорость гидролиза АТФ, и мостики теряют способность сцепляться с актином, при этом мышца снижает силу сокращения, несмотря на поступающий от мотонейрона сигнал.
Существует и еще как минимум две причины снижения силы мышц - при длительной работе накопление продуктов метаболизма тормозит процессы передачи сигнала от мотонейрона к волокну (Романовский Д.Ю.), а в центральной нервной системе развивается охранительное торможение.
То есть "отказ" мышцы является суперпозицией различных причин и доминирование одного либо другого фактора определяется интенсивностью работы мышцы.
Резкая активизация мышечной деятельности из состояния покоя требует такого же резкого увеличения скорости производства энергии.
Для достижения максимальной мощности основных источников воспроизводства энергии (гликолиза в быстрых волокнах и окисления в медленных) требуется время.
Скорость воспроизводства АТФ за счет гликолиза достигает своего максимума только через 20 -30 секунд после начала интенсивной работы.
Для достижения максимальной скорости окислительного процесса требуется гораздо больше времени, связано это в основном с необходимостью оптимизацией процессов доставки кислорода. Скорость окисления становится максимальной лишь через 1-2 минуты работы мышц, этот эффект наверняка известен вам под названием "второе дыхание".
Между тем мышца развивает максимальную мощность с первых же долей секунд после поступления команды к сокращению, гликолиз, в совокупности с окислением, не в состоянии обеспечить необходимую скорость воспроизводства АТФ для поддержания этой мощности. Приведение в соответствие скоростей расхода и воспроизводства АТФ во время работы мышцы идет по двум направлениям. Во-первых, постепенная активизация гликолиза и окисления увеличивает количество АТФ, синтезируемого в единицу времени за счет этих источников. Во-вторых, накопление продуктов метаболизма, в результате деятельности гликолиза и окисления, снижает активность АТФазы миозина и соответственно скорость расхода АТФ. Благодаря этим двум процессам скорости расхода и воспроизводства АТФ выравниваются, и в дальнейшем движение продолжается с постепенно снижающейся мощностью, но в состоянии равновесия между количеством синтезируемого АТФ и потребностями мышцы в энергии. Отказ же мышцы наступает не из-за окончания запасов АТФ, а из-за снижения сократительной способности мышц в результате накопления кислых продуктов метаболизма.
До выравнивания скоростей расхода и воспроизводства энергии дефицит АТФ покрывается за счет имеющегося в мышце креатинфосфата. То есть креатинфосфат играет роль буфера энергии, сглаживающего несоответствия в скоростях воспроизводства и потребления АТФ при резко возрастающих нагрузках.
В обычной жизни мы редко используем собственные мышцы на пределе их энергетических возможностей, поэтому они вполне обходятся небольшим запасом креатинфосфата и ферментов обеспечивающих протекание реакций гликолиза и окисления, достаточным для повседневной жизни. По приходу в спортивный зал мышцы оказываются неготовыми к предстоящей работе. И если дать нагрузку, значительно превышающую привычную, то запас креатинфосфата в волокнах, первыми включившихся в работу, очень быстро заканчивается еще до того момента, когда процессы гликолиза в быстрых волокнах или окисления в медленных наберут обороты и обеспечат приемлемую скорость воспроизводства АТФ. Таким образом, из за интенсивного расхода и неадекватной скорости воспроизводства энергии, уровень АТФ в ряде волокон падает ниже критического. Так как движение продолжается под действием силы других волокон или внешней силы (при негативном движении), то в рассматриваемых нами волокнах происходит разрушение миофибрильных нитей.
Вот главный секрет тренировочного стресса: Микротравмы мышечного волокна возникают при исчерпании запасов креатинфосфата до того, как скорость воспроизводства АТФ за счет гликолиза и окисления станет равной скорости расхода АТФ.
Этим и объясняется тот факт, что тренировочный эффект воздействия на быстрые волокна достигается при интенсивной работе длительностью от 7 до 30 секунд. Если нагрузка позволяет поддерживать требуемую силу сокращения мышц дольше чем 30 секунд, то скорость расхода энергии в мышце, скорее всего, будет не достаточно велика для падения концентрации АТФ ниже критического уровня. Отказ мышцы в этом случае наступает в результате накопления кислых продуктов метаболизма, и является физиологически нормальным явлением, не оказывая на мышцу стрессового воздействия. Когда нагрузка велика, но может продлиться не дольше нескольких секунд (2-3 повторения), наблюдается другая картина. Скорость расхода энергии достаточно высока, но отказ, вызванный легким снижением силы волокон по причине накопления продуктов метаболизма и снижения концентрации АТФ (но не ниже критического уровня), происходит еще до исчерпания запасов креатинфосфата, и стрессовая ситуация не наступает.
Понятно, что при такого рода режиме работы мышц добиться микротравм в окислительных (медленных) волокнах невозможно. Скорость расхода АТФ в медленных волокнах значительно ниже, чем в быстрых, поэтому запасы креатинфосфата истощаются плавно. И, пожалуй, получение микротравм в медленных волокнах было бы практически невозможным, если бы для активации окислительных процессов требовалось столько же времени, как для активизации гликолиза. Но, как я упоминал ранее, максимум выработки АТФ за счет окисления наблюдается только через 1-2 минуты работы, поэтому есть шанс добиться микротравм в медленных волокнах если успеть получить дефицит АТФ в результате интенсивной работы в течении 1-2 минут.
Предложенная мною модель получения микротравм очень хорошо согласуется с еще одним физиологически важным явлением, известным каждому спортсмену, но до сих пор не получившему сколько ни будь приемлемого объяснения, - посттренировочная боль особенно сильна после первых занятий и практически полностью исчезает при регулярных тренировках, появляясь вновь только в случае длительного перерыва. Секрет этого явления очень прост - ответной реакцией на тренировку, помимо усиления синтеза белка, является накопление в мышце креатинфосфата и повышение концентрации и активности ферментов гликолиза и окисления. С каждой тренировкой относительное количество креатинфосфата в мышечном волокне увеличивается, растет и мощность гликолиза и окислительных реакций, в результате добиться исчерпания запасов креатинфосфата до выравнивания скоростей расхода и восстановления АТФ за счет основных источников энергии становится все труднее, а при высоком уровне тренированности практически невозможно.
И так, вот еще один важнейший вывод:
Накопление креатинфосфата и рост мощности гликолиза и окисления в результате тренировок, с одной стороны, повышает силу мышц и способствует росту их работоспособности, с другой стороны, препятствует созданию стрессовых ситуаций и снижает воздействие тренировки на мышцу, тем самым, замедляя дальнейшие адаптационные реакции.
Явление постепенного "привыкания" мышц к нагрузке известно методистам бодибилдинга достаточно давно под названием "тренировочное плато". До сих пор биохимические причины процессов, приводящих к снижению восприимчивости мышц к тренировке, были не известны, поэтому для преодоления плато чаще всего советовали сменить режим работы, заменить выполняемые упражнения, изменить тренировочный сплит, либо увеличить объем нагрузки, чтобы как то по новому воздействовать на мышцу и добиться от нее ответной реакции.
Между тем, для того, чтобы добиться снижения концентрации АТФ, по мере накопления в мышце большого количества креатинфосфата и роста ее энергетических возможностей необходимо постоянно повышать скорость расхода энергии, для чего в распоряжении атлета имеется не так много способов, од ин из них - повышение веса снаряда. Постоянное увеличение веса снаряда, в стремлении интенсифицировать нагрузку приводит к тому, что количество повторений в движении опускается ниже 4-х, что, как я показал выше, не может оказать на мышцу необходимого воздействия. Увеличение же объема работы за счет количества упражнений и подходов в этом случае малоэффективно. Если интенсивность расхода энергии не достаточно высока для исчерпания накопленного в мышце креатинфосфата до выравнивания скоростей расхода и синтеза АТФ, и стрессовая ситуация не наступает в первом же подходе, то последующие подходы, скорость расхода энергии в которых меньше чем в первом подходе, в виду остаточного накопления продуктов метаболизма, тем более не дадут нужного эффекта. Напоминаю, что уровень креатинфосфата в мышце восстанавливается в течение нескольких минут, а вот молочная кислота, снижающая мощность сокращения, полностью выводится из мышцы лишь в течение нескольких часов после тренировки. Таким образом, по мере приспособления мышц к тренировочным нагрузкам, тренировка из стрессового фактора превращается в обычную работу. В таком состоянии спортсмен может тренироваться почти каждый день, не наблюдая никакой перетренерованности, так как для восстановления мышц ему оказывается достаточным даже одного-двух дней отдыха, именно по тому, что такая тренировка не вызывает разрушения волокон. Но есть ли смысл в тренировках такого рода для бодибилдера? Да, при постепенном наращивании объема работы будет расти и объем саркоплазмы волокон, за счет накопления энергетических веществ, но такой рост не беспределен. Без увеличения количества и объема миофибрилл, а особенно количества клеточных ядер в волокнах (не будем исключать и возможность увеличения количества самих волокон), добиться значительной гипертрофии мышц невозможно.
Как же быть, неужели это тупик?