ТТЧ помогает ответить на вопросы о выводимых числах Значит ли это, что одна-единственная формальная система — ТТЧ — предоставляет нам способ ответить на любой вопрос о любой формальной системе? Возможно. Возьмем например, такой вопрос: Является ли MU теоремой системы MIU? Найти ответ на этот вопрос означало бы определить, является ли 30 числом MIU. Поскольку это утверждение — высказывание теории чисел, мы должны надеяться, что при достаточном усилии нам удастся перевести высказывание «30 — число MIU» в нотацию ТТЧ, точно так же, как нам удалось перевести на язык ТТЧ другие высказывания теории чисел. Должен сразу предупредить читателя, что, хотя подобный перевод существует, он невероятно сложен. Если вы помните, в главе VIII я говорил, что даже такой простой арифметический предикат как «b — степень 10» весьма непросто перевести в ТТЧ; предикат же «30 — число MIU» перевести еще гораздо сложнее! Все же этот, перевод можно найти, и число SSSSSSSSSSSSSSSSSSSSSSSSSSSSSS0 может быть подставлено в него вместо любого b. Результатом явилась бы МОНструозная строчка ТТЧ, говорящая о головоломке MU. Сдается мне, что подходящим названием для этой строчки было бы МУМОН. С помощью МУМОНа и подобных строчек ТТЧ теперь способна говорить в закодированной форме о системе MIU. Дуалистическая природа МУМОНа Чтобы извлечь какую-либо пользу из этой странной трансформации нашего первоначального вопроса, нам необходимо ответить еще на один вопрос: Является ли МУМОН теоремой ТТЧ? До сих пор мы всего лишь заменили короткую строчку (MU) на другую (монструозный МУМОН) и простую формальную систему (MIU) — на более сложную (ТТЧ). Хотя мы перефразировали, вопрос, маловероятно, что это приблизило нас к ответу. Действительно, в ТТЧ есть такая куча укорачивающих и удлиняющих правил, что перифраз вопроса, скорее всего, окажется гораздо труднее оригинала. Некоторые читатели, пожалуй, могли бы сказать, что анализировать MU пои помощи МУМОНа — значит нарочно смотреть на вещи по-дурацки. Однако МУМОНа можно рассматривать более, чем на одном уровне. Интересно то, что в МУМОНе есть два различных пассивных значения. Во-первых, приведенное выше: 30 — число MIU. Во-вторых, мы знаем, что это высказывание изоморфно следующему: MU — теорема системы MIU. Следовательно, мы имеем право утверждать, что последнее высказывание — второе пассивное значение МУМОНа. Это может показаться странным, поскольку МУМОН состоит всего лишь из плюсов, скобок и тому подобных символов ТТЧ. Как же он может выражать что-либо, кроме арифметических высказываний? На самом деле, это возможно. Так же, как одна единственная музыкальная строчка может заключать в себе гармонию и мелодию, как слово BACH может быть прочитано как имя и как мелодия, как одно и то же словосочетание может быть аккуратным описанием картины Эшера, структуры ДНК, произведения Баха или Диалога под тем же названием, МУМОН может быть понят, по крайней мере, двояко. Это происходит благодаря следующим фактам: Факт 1. Высказывания типа «MU — теорема» могут быть закодированы в теории чисел при помощи Гёделевой нумерации. Факт 2. Высказывания теории чисел могут быть переведены в ТТЧ. Можно сказать, что (согласно Факту 1) МУМОН — это закодированное сообщение, в котором (согласно Факту 2) символы кода — не более, чем символы ТТЧ. | |
Просмотров: 776 | |
Всего комментариев: 0 | |